
Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

RestMS

A new protocol for
web messaging

by Pieter Hintjens, iMatix Corporation

February, 2009



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

Why do we need Messaging?

● To connect the pieces together
● It's cheap to make applications
● But how do they talk to each other?

● To create information feeds
● “I'm renting my apartment”

● To mine information feeds
● “I'm searching for an apartment”
● Think: Yahoo! Pipes



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

What Messaging should offer

● Easy to connect to from any application
● Generic tools for creating & mining feeds
● Early filtering vs. late filtering

● Don't send unwanted data over the network
● Scalability

● 1, 10, 100, 1000, 10K, 100K messages/sec
● Loose coupling

● Hiding applications from each other



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

Use cases

● “Server-side search of current events”
● Watch IRC channels for interesting stuff
● Monitor thousands of news channels
● Track thousands of postings and uploads
● Follow thousands of stock values
● etc.



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

The State of the Art

● Web messaging
● Simple direct messaging
● RSS, AtomPub, XMPP, SOAP

● Business messaging
● Java repackaging of legacy tools
● Queues, pub-sub

● Enterprise messaging
● Mostly expensive closed products
● Queues, pub-sub



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

Challenges

● Routing model
● Hard-wired or dynamic?
● Fixed algorithms or extensible?

● Protocol vs. product
● Real competition in the market?
● Free and open digital standard?

● Complexity
● Simple to understand and use
● Or, “enterprise technology”?



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

Why is messaging unpopular?

● Too complex
● “Results 1 - 10 of about 264,000 for 'soap too 

complex'.”
● Complexity means extra cost

● Not interoperable
● Products are not standards
● Languages are not universal

● Still too few FOSS solutions
● Mainly due to lack of open standards



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

In an Ideal World...

● Based on free and open standards
● Generic & extensible routing
● Easy to use in any language
● Runs nicely on any operating system
● Fast enough for real work

● Low latency (10usec to 1sec)
● High volume (1/sec to 1M /sec)



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

AMQP

✔ Free and open standard
✔ Generic & extensible routing
✗ Not easy to use in any language

✗ It's a complex binary protocol that needs an 
API stack for each language

✔ Runs nicely on any operating system
✔ Fast enough for real work

● AMQP is great except it's inaccessible



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

AtomPub

✔ Free and open standard
✗ A single limited routing model

✗ Publish to feed, read from feed: no filtering or 
routing

✔ Easy to use in any language
✔ Runs nicely on any operating system
✔ Fast enough for real work

● AtomPub is great except it's limited



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

So why RestMS?

● AMQP showed us something new
● Generic routing (“exchange-binding-queue”)
● Portability (Linux, AIX, Solaris, win32)
● Interoperability (C, C++, Java, .NET, Python)
● Performance (~500k msg/sec in OpenAMQ)

● But it remains inaccessible
● How do I use AMQP from the web?
● How do I use AMQP in language X?



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

Magic potions

● Take the best of AMQP and AtomPub
● Shake briskly, allow to cook:
● AMQP's routing model (improved)
● RESTful access over ordinary HTTP(S)
● Portable & interoperable
● Documented as free and open standard
● Interoperate with AMQP networks



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

Architecture

RestMS
Server

HTTP
network

AMQP
network

RestMS
Server

Public 
Internet

Company 
Intranet



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

How RestMS works

● Publishers send messages to feeds
● Subscribers create pipes

● And join their pipes to feeds
● Subscribers then read from their pipes

● Get message, process message, loop
● Joins specify the routing arguments

● By key, by expression, etc.



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

RESTful access

● If you know HTTP, you know REST
● Create/Read/Update/Delete resource

● POST creates a new resource
● GET reads a resource
● PUT updates a resource
● DELETE spawns... just kidding, it deletes the 

resource
● Resources are mostly shown in XML

● But RestMS also supports JSON



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

Why REST / HTTP is cool

● It is simple
● It uses existing transports
● It uses existing security
● It uses existing libraries
● It uses existing metaphors (CRUD)
● It scales on a web infrastructure

● Proper attention to caching



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

REST / HTTP gotchas

● Rather chatty
● Can be solved by batching writes and reads

● Polled vs. event driven
● Can be solved by using “long polls”

● Rather verbose (XML envelopes)
● Ignore the problem, it will go away

● Not an “enterprise technology”
● Wait, it will be



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

What's available now?

● restms.org
● Draft RestMS specifications
● Example client code (Perl, for now)

● openamq.org
● Source code for OpenAMQ & Zyre

● zyre.com
● All about Zyre

● live.zyre.com
● Live RestMS server, running Zyre



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

Conclusions

● Messaging is a great tool
● But the good stuff is too complex
● And the simple stuff is too limited
● Time for a simple, capable option
● Based on a free and open standard
● With a solid implementation



Copyright © 2006-2009 iMatix Corporation
CreativeCommons Attribution-Share Alike 3.0

Thank you

● For more information please contact the 
author at ph@imatix.com

● Comment & discuss at zyre.com
● Email list, see www.openamq.org


	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

